Asymmetry in Sexual Pheromones Is Not Required for Ascomycete Mating
نویسندگان
چکیده
BACKGROUND We investigated the determinants of sexual identity in the budding yeast Saccharomyces cerevisiae. The higher fungi are divided into the ascomycetes and the basidiomycetes. Most ascomycetes have two mating types: one (called α in yeasts and MAT1-1 in filamentous fungi) produces a small, unmodified, peptide pheromone, and the other (a in yeasts and MAT1-2 in filamentous fungi) produces a peptide pheromone conjugated to a C-terminal farnesyl group that makes it very hydrophobic. In the basidiomycetes, all pheromones are lipid-modified, and this difference is a distinguishing feature between the phyla. We asked whether the asymmetry in pheromone modification is required for successful mating in ascomycetes. RESULTS We cloned receptor and pheromone genes from a filamentous ascomycete and a basidiomycete and expressed these in the budding yeast, Saccharomyces cerevisiae, to generate novel, alternative mating pairs. We find that two yeast cells can mate even when both cells secrete a-like or α-like peptides. Importantly, this is true regardless of whether the cells express the a- or α-mating-type loci, which control the expression of other, sex-specific genes, in addition to the pheromones and pheromone receptors. CONCLUSIONS We demonstrate that the asymmetric pheromone modification is not required for successful mating of ascomycete fungi and confirm that, in budding yeast, the primary determinants of mating are the specificity of the receptors and their corresponding pheromones.
منابع مشابه
Pheromone expression reveals putative mechanism of unisexuality in a saprobic ascomycete fungus
Homothallism (self-fertility) describes a wide variety of sexual strategies that enable a fungus to reproduce in the absence of a mating partner. Unisexual reproduction, a form of homothallism, is a process whereby a fungus can progress through sexual reproduction in the absence of mating genes previously considered essential for self-fertility. In this study, we consider the molecular mechanis...
متن کاملYeast Mating: Trying Out New Pickup Lines
Mating of Ascomycete fungi involves chemically distinct pheromones; one partner makes a lipid-modified peptide, the other partner a simple peptide. A new study has now found that this inherent asymmetry may not be necessary.
متن کاملPheromones and pheromone receptors are required for proper sexual development in the homothallic ascomycete Sordaria macrospora.
The homothallic, filamentous ascomycete Sordaria macrospora is self-fertile and produces sexual fruiting bodies (perithecia) without a mating partner. Even so, S. macrospora transcriptionally expresses two pheromone-precursor genes (ppg1 and ppg2) and two pheromone-receptor genes (pre1 and pre2). The proteins encoded by these genes are similar to alpha-factor-like and a-factor-like pheromones a...
متن کاملEffect of pheromones on the plasma level of prolactin during pregnancy and lactating periods in female rat
Introduction: Pheromones play a great role in the reproductive and social behavior of animals. The main sources of pheromones are urine and paracrine secretions. Through the neuroendocrine system, prolactin is a safe parameter to measure and compare the effects of pheromones on the sexual, maternal and also lactating behavior. Methods: Female rats were divided into 19 groups (n=8). To measur...
متن کاملMating type‐dependent partner sensing as mediated by VEL1 in T richoderma reesei
Sexual development in the filamentous model ascomycete Trichoderma reesei (syn. Hypocrea jecorina) was described only a few years ago. In this study, we show a novel role for VELVET in fungi, which links light response, development and secondary metabolism. Vel1 is required for mating in darkness, normal growth and conidiation. In light, vel1 was dispensable for male fertility but essential for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 21 شماره
صفحات -
تاریخ انتشار 2011